

The option of implementing an RF deflector in the NGLS Spreader

A. Ratti, M. Placidi and the NGLS design team 19 July 2012

NGLS next generation light source

NGLS Motivation

Coherent X-rays with high repetition rate, unprecedented average brightness, and ultrafast pulses

NGLS Approach

High average power electron beam distributed to an array of FELs from high rep-rate injector and CW SCRF linac

Three initial FEL beamlines to span the science case

- High resolution
- ~Time-bandwidth limited
- 10¹¹ 10¹² photons/pulse
- $10^{-3} 5x10^{-5} \Delta\omega/\omega$

 Diffractive imaging (with harmonics)

- Ultra-fast
- 250 as pulses
- Two color
- 10⁸ ph/pulse

- Highest rep rate, MHz and greater
- High flux
- 10¹¹ 10¹² photon/pulse
- 100 W
- Diffractive imaging (at highest rate)
- Photon correlation spectroscopy

C. Sun

Baseline - Take-Off DOFO cell, 9.2m length, 45° phase advance

ARCs: Two separate double-bend achromats, 36° total deflection

Total footprint: ~135 x 7.8m²

Baseline: Single BeamLines

C. Sun

EM Kicker Requirements

Parameter	Symbol	Unit	Value
Beam Energy	E	GeV	2.6
Bend Angle	$ heta_k$	mrad	0.7
Kicker Length	L_k	m	1.8
Magnetic Strength	B_k	G	33.7
Magnet Aperture	-	mm	17.0 x 17.0
Magnet Length	-	m	0.12
# of Magnets	-	-	15
Integrated B Field Rise/ Fall Time	-	ns	50
Repetition Frequency	-	kHz	100
Pulse to Pulse Stability	-	-	4x10 ⁻⁴
Interpulse Ripple	-	-	4x10 ⁻⁴
Magnet Current	I_k	A	45.59
MOSFET Voltage		V	< 700
Switch Rise/Fall Time	-	ns	<10
Magnet Fill Time	-	ns	<30
A v e r a g e P o w e r (System) Chamber Resistance	-	kW	1.91
	-	$m\Omega/sq$	50
Chamber Dissipation (@ 1-nC/bunch)	-	W/m	800.0

Kicker Spreader Overview

HV deflector

Electrode

Septum foil

Foil tensioners

Spreader Take-off baseline design

Challenges for baseline approach

- Limited pulser rep rate 100 ->few kHz
- High pulser stability and repeatibility requirements – few 10⁻⁴
- Challenging Electro Static Septum Design
 - Thin electrode exposed to synchrotron radiation from deflected bunches can cause foil local heating and electron photo emission

DC Constraints

- Alternative scheme aiming at replacing Kicker + ESS with DCs
- Footprint comparable to (smaller than) present
- Should not reduce beam separation at EMS
- Should not exceed offsets in QF next to EMS
- Include room for FODO lattices
- Allow for beam lines separation as required

Scenarios

DC Scenarios depend on Residual spatial chirp at zero-Xing

TOLERABLE: 3-WAY SEPARATION

How many beamlines

How many RF Frequencies

DC Septum Options: T-EMS (T-LS)

Emittance diluition from Paul Emma's TN-20:

dependence on $\lambda^{-1/2}$ HELPS!

P. Emma, NGLS Tech Note-0020 / 06.16.2012

$$\frac{\Delta \varepsilon}{\varepsilon_0} \approx \sqrt{1 + \left(\frac{2\pi x_0' \sigma_z}{\lambda}\right)^2 \frac{\beta \gamma}{\varepsilon_N}} - 1 < 10\%$$

f _{RF} /f _{LINAC}	f _{RF} /MHz	λ_{RF} / mm	$\Delta \epsilon / \epsilon_0$
1/2	650	462	14.6%
1/3	433	693	6.7
1/4	325	923	3.9

Investigate DC schemes including un-deflected pass at zero-crossing

Comments

- We need low frequencies for emittance preservation
- Multiple stages can only be done using different frequencies
- We limit the design to two stages
 - We have to assume zero crossing does not compromise beam quality
- One Deflecting Cavity would replace three kickers and Electrostatic septa
 - With a 10 MV kick

An initial 3 beamlines layout

NGLS next generation light source

A 9 beamlines layout

Layout parameterization / 1

Nine beamlines

Three bunch frequencies: $f_b/4$ (1x), $f_b/8$ (4x), $f_b/16$ (4x) Six lines without RF zero X-ings, Two with one, One with two

- Total deflection θ can be optimized to limit CSR effects with a proper choice of the position d_i of the first element of ith achromat and the separation c between the nine parallel lines for a desired separation s between FELs beam lines.
- Together with the three-bender Achromat and the dog-leg lengths the parameters c and d_i determine the spreader footprint.

Layout parameterization / 2

Position d_i of first element of i^{th} achromat defined by s, c and θ

$$d_i = (i-1)\frac{s - c\cos\theta}{\sin\theta}$$

Parameter d_9 vs. c and θ FEL separation s = 5.4m36 30 θ [deg] **c** [m] $d_9[m]$ 9.2 10.8 12.8 1.0 7.8 9.1 10.6 1.5 7.1 8.2 9.6 2.0 7.3 6.4 8.5

Footprint Comparison for: c=1m, θ =25deg \rightarrow d₉=10.6m

CDR

DC L \approx 75m / W \approx 14m (+4m /-10m w.r.t. Linac line)

CDR L = 130m / W = 7.5m

Frequencies at Play

- This example: 4 bunches zero X-ing in DC1, 3 beamlines fed by DC3
- f_{RF2} (DC2, DC3, DC4) = 1.5 f_{RF1} (DC1)

NGLS next generation light source

Three-way separation - Comments

- Cavities are ≥3m apart: problems with cryo installations?
- Dog leg transitions btw DCs:
 - Quads not shown in layout
 - $-\eta_x=0$, not synchronous unless more components
- OPTION Non-parallel trajectories out of T-EMS:
 - Fewer components
 - Three different achromat deflections
 - Longer longitudinal footprint to preserve lines separation

Three-ways DC separation - Outlook

- Four DCs for 9 Beamlines / Present: 9x (Kicker + ESS) for Ten lines
- Cold CW RF: Bunch Frequency not limited (Kicker: ~100kHz)
- Better Deflecting stability
- BSY modularity Optional Initial layout: 1 DC for 3 beamlines
- BSY footprint
 - DC Longitudinal 40% more compact: 75m (130m) / 55m shorter
 - DC Transverse larger: (4+10)m (7.5m).

Current Strawman Design

- Propose to Use f₀ and 1.5x f₀
 - i.e. 325 MHz and 487.5 MHz
 - Good experience with systems at similar frequencies
- Plenty of RF power sources and components available
 - TV broadcast frequencies
- Existing R&D at similar frequencies
 - As presented at this workshop!
 - Some development will still be necessary

Cavities vs. stripline kicker

Pro

- Very high field Stability
- "Unlimited" rep rate
- Easy to find RF sources and components
- Benefit from ongoing R&D in the community

Not-Pro

- Emittance preservation?
- Pulse pattern flexibility?
- Fabrication and maintenance cost
- More extensive installation
- HOMs
- Requires multiple frequencies
- Some R&D required to adapt existing cavity designs

Cavities vs. Stripline kicker

Pro

- Simpler technology
- Simpler installation
- Allows for almost any pattern in any beamline
- Easy to replicate
 - Same design for all beamlines

Not-Pro

- Limited rep rate (few 100kHz)
- Challenging stability (<<10^-4)
- Dedicated R&D required for both pulsers and structures

Open Questions

- Can the beam cope with zero crossings?
 - +Major reduction in n. of beamlines
 - Emittance growth + reduced FEL performance
- HOMs + dampers?
- Geometry sizes
- Other creative schemes could allow for more flexibility in the beam patterns

Summary

- Deflecting cavities for the spreader are becoming increasingly appealing
 - The whole project is still in conceptual design
- We plan to continue this study and work with our many collaborators to study the major issues
- Recent great progress in DC technology (as shown at this workshop) make it easier to envision an implementation in NGLS
- Timing, synchronization and RF controls is one of the group's strengths and not expected to be an issue

Questions?

